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ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission will provide operational ocean color that will be

superior to the previous Coastal Zone Color Sensor (CZCS) proof-of-concept mission. An algorithm is needed
that exploits the full functionality of SeaWiFS whilst remaining compatible in concept with algorithms used for
the CZCS. This document describes the theoretical rationale of radiance band-ratio methods for determining

chlorophyll a and other important biogeochemical parameters, and their implementation for the SeaWIFS mis-

sion. Pigment interrelationships are examined to explain the success of the CZCS algorithms. In the context

where chlorophyll a absorbs only weakly at 520 nm, the success of the 520 nm to 550 nm CZCS band ratio needs to
be explained. This is explained by showing that in pigment data from a range of oceanic provinces chlorophyll a

(absorbing at less than 490 nm), carotenoids (absorbing at greater than 460 nm), and total pigment are highly

correlated. Correlations within pigment groups particularly photoprotectant and photosynthetic carotenoids are
less robust. The sources of variability in optical data are examined using the NIMBUS Experiment Team (NET)

bio-optical data set and bio-optical model. In both the model and NET data, the majority of the variance in

the optical data is attributed to variability in pigment (chlorophyll a), and total particulates, with less than 5%

of the variability resulting from pigment assemblage. The relationships between band ratios and chlorophyll

is examined analytically, and a new formulation based on a dual hyperbolic model is suggested which gives a
better calibration curve than the conventional log-log linear regression fit. The new calibration curve shows the

490:555 ratio is the best single-band ratio and is the recommended CZCS-type pigment algorithm. Using both
the model and NET data, a number of multiband algorithms are developed; the best of which is an algorithm

based on the 443:555 and 490:555 ratios. From model data, the form of potential algorithms for other products,

such as total particulates and dissolved organic matter (DOM), are suggested.

1. INTRODUCTION

As a second-generation ocean color instrument, the Sea-

viewing Wide Field-of-view Sensor (SeaWiFS) offers a vari-

ety of design improvements over its predecessor the Coastal

Zone Color Scanner (CZCS). The design of the SeaWiFS

instrument was driven by science requirements as defined

by the SeaWiFS Prelaunch Science Working Group (SP-

SWG). The SPSWG was an ad hoc committee selected

by the National Aeronautics and Space Administration

(NASA) Headquarters for the purpose of providing NASA
with guidance in the formulation of mission objectives,

specifications, and goals. The SPSWG has specifically ex-

pressed a requirement for continuity between CZCS and

SeaWiFS products.
Consequently, the SeaWiFS Project Office (SPO) plans

to produce three groups of level-2 derived products: Sea-

WiFS baseline, CZCS-type, and potential SeaWiFS prod-

ucts. A differentiation is made between CZCS-type pig-

ment and SeaWiFS baseline chlorophyll-like pigment con-

centrations. The SeaWiFS semianalytical algorithm for

chlorophyll a will be developed using analytical and semi-

analytical models. Chlorophyll a is the parameter that has

been chosen as it is regarded universally as the most ap-

propriate measure of viable phytoplankton biomass (i.e.,

phytoplankton which are growing actively and capable of

growth).
The CZCS-type pigment product is supposed to pro-

vide some form of continuity with the total pigment prod-

uct derived from CZCS imagery, termed the CZCS Pig-

ment Algorithm product. There is no predetermined con-

sensus for the rationale or definition of this product (chlo-

rophyll a, photosynthetic pigments, or total pigments). A
choice must be made at the outset, so a methodological

approach can be determined and described. The proposed

approach should be essentially empirical, and use band ra-

tios in common with the original CZCS algorithms. There
is a strong desire in the community, for example, the Bio-

Optical Algorithm Working Group (BOAWG), that there
should be a SeaWiFS product compatible with the CZCS

imagery, so retrospective processing can be applied and

comparability between CZCS and SeaWiFS data can be
achieved.

To derive global bio-mass and productivity trends on

decadal time scales, it is possible the standard NASA CZCS
two-band algorithm, used for the global processing, could

be used unaltered. It may be that an algorithm using

all three bands at 443, 520, and 550 nm, however, would

give a more statistically robust relationship; these bands
are close to the SeaWiFS 443, 510, and 555 nm bands and

continuity would seem likely in this case.

This hypothesis is flawed logically in a number of re-

spects, primarily because of the differences between the

CZCS and SeaWiFS instruments (Hooker et al. 1993). Sea-
WiFS will have precision radiometry (10 bit resolution),

precision calibration (prelaunch and onboard), stability of

calibration monitoring, and established vicarious calibra-

tion schemes--CZCS had nothing comparable. SeaWiFS
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will havetwoinfrared(IR) bands(765and865nm)which
will allowfor precisionatmosphericcorrection,whereas
CZCSatmosphericcorrectionwaslimitedandoftenfailed
(manyoftheassumptionsnecessaryforCZCSatmospheric
correctionwereinvalid,e.g.,oftenthe 670nmbandwas
not truly a zerowater-leavingradianceband);SeaWiFS
will haveat leastfiveprecisionatmosphericallycorrected
bands(whereasCZCShadthree)offeringagreaterpoten-
tial for multibandalgorithmsof widespreadapplicability.
In fact,theonlystrictly comparablefeaturebetweenthe
CZCSandSeaWiFSinstrumentsisthecommonblueband
at 443nm.

Theradicaldifferencebetweentheatmosphericcorrec-
tionschemesmaymeanthat comparabilitywillbelimited.
It is likelythe bestSeaWiFSband-ratioalgorithmswill
usethree,four,or fivevisiblebandsnotcompatiblewith
CZCS:threebandsusing412,443,and555nmor443,490,
and555nm;fourbandsusing412,443,490(or510),and
555nm;or fivebandsusing412,443,490,510,and555nm.
TheBOAWGteamhasagreedthatbesidestheCZCS-type
pigmentalgorithm,thereshouldbecontinuedresearchto
identifythebestpossibleSeaWiFSpigmentalgorithm.

Theobjectiveof thisstudyis to providea band-ratio
algorithmthathasthebestpossiblecontinuitywithCZCS
measurements.Thefocusof attention,however,isonthe
derivationofthebestpossibleband-ratioalgorithmforthe
retrievalofphytoplanktonpigmentsfromSeaWiFSobser-
vations.Thedesireis to achievethesegoalsbasedona
soundtheoreticalbasisandrationale.

2. PIGMENTS REVISITED

The product from the CZCS pigment algorithm was

chlorophyll a plus phaeopigment concentration, Ca + Cp

(as determined by the fluorometric method), which were
considered the main absorbing agents of biogenic origin by

the NIMBUS Experiment Team (NET). The reasons for

the choice of the Ca + Cp parameter was partly historical
and partly methodological. Prior to 1980, the principle
methods for the determination of chlorophyll a were the

tri-chrometric spectrometric method (Strickland and Par-

sons 1972) and the fluorescence method (Yentsch and Men-

zel 1963). Both methods could be imprecise (e.g., at low
concentrations) and frequently under- and over-estimated

both Ca and Cp due to the presence of other interfering
pigments, notably chlorophyll b and chlorophyll c.

It is now accepted by most biological oceanographers
that phaeopigments rarely exceed 3-8% of the total pig-

ment concentration in the surface layer of the ocean, with

the exception of a few well understood circumstances, for

example, when zooplankton grazing is high and localized.
Furthermore, there are a number of other photosynthetic

and photoprotectant pigments which co-exist, co-vary, and

absorb at the same wavelengths as chlorophyll a, and which
occur in significant concentrations. Individually, they may

account for approximately 5-50% of the total pigment con-
centration and, in combination with chlorophyll a, may

contribute to over 95% of the total pigment biomass. Most
of these have an important influence on water color at the

wavelengths of the SeaWiFS bands. An accurate assess-

ment would involve the sum of the optically weighted con-
tribution of the main pigments present for different natural

phytoplankton assemblages in different geographical sites
and seasons.

A comment on pigment measurement techniques is ap-

propriate here. Much of the insight into the composition

and significance of differing phytoplankton pigments has
come as a result of the development of analyses using

the high performance liquid chromatography (HPLC) tech-

nique (Mantoura and Llewellyn 1983 and Trees et al. 1985),
which is the recommended methodology in the Ocean Op-

tics Protocols for SeaWiFS Validation (Mueller and Austin

1995).
Along with the insight on pigments for some has come

confusion for others, with earlier reports that concentra-

tions of pigments determined by HPLC and fluorescence

(Trees et al. 1985) differed markedly--much lower pigment

concentrations were obtained using the HPLC technique.

A thorough investigation by Trees et. al (1995) has shown
that when each method is applied rigorously, each yields

about one-to-one (=h10%) relationships for chlorophyll a
in most bio-optical provinces. Errors can arise, however,

if the protocols for sampling, filtration, extraction, and

calibration are not adhered to strictly; exceptions occur

if either chlorophyll b or chlorophyll c are atypically high
(greater than about 5% of the total).

Recently, there have been several studies investigating

the contribution of the major phytoplankton pigments to

light absorption in the oceans, including the independent
analyses by Bidigare et al. (1990) as well as Hoepffner and

Sathyendranath (1993). Although the latter study was re-

stricted to samples from the Georges Bank area, both stud-

ies showed the major pigments that need to be included to
account for 95% of the light absorbed are relatively few in
number:

1) Chlorophylls a, b, and c;

2) The photosynthetic carotenoids (PSC); and

3) The photoprotectant carotenoids (PPC).

In the yellow-orange part of the spectrum (at around

550nm), the phycobilin, phycoerythrin, and phycocyanin
pigments are moderately important light absorbers. These

pigments occur mostly in cyanobacteria, which are gener-

ally unimportant in the surface layers of the ocean rel-

evant to this study; the only known instances of signif-
icance correspond to blooms of cyanobacteria occurring

in upwelling regions. Other, taxa-specific, tag-pigments

are also insignificant to the total light absorption in the

ocean--individually or collectively they account for less

than 5% of the absorption. Both Bidigare et al. (1990)

and Hoepffner and Sathyendranath (1993) give tables of
the specific absorption coefficients of these major pigment

groups. Although there is general agreement between these

2
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Table 1. Totalpigmentconcentration(CTp) to chlorophyll a (Ca) relationships.

CTp R 2 N Comments

0.021 + 2.17Ca 95.5 670 All data.
-0.040 + 2.30Ca 95.9 630 Ca _< 3mgm -3

0.031 + 2.16Ca 93.2 416 z <_ 10m

Table 2. Global total pigment regressions_.

Region Ca R 2 C b R 2 Cc R 2 Cabc R 2 Cpp R 2 Cps R 2

Antarctic
NEAT 89-90

NEAT 915
GIN Seas

Georges Bank

Bermuda (BATS)
EqPac

0.544 97.3

0.422 99.6

0.519 98.6

0.367 96.6

0.525 98.8

0.499 99.6

0.446 99.7

0.006 35.7

0.016 76.6

0.024 27.1

0.085 74.6

0.066 84.4

O.026 52.6
0.074 93.6

0.154 79.6

0.134 99.5
0.020 86.3

0.103 88.8

0.051 98.2
0.036 89.7

0.042 91.4

0.295 98.8

0.427 99.3

0.436 97.4

0.443 95.0

0.358 98.5

0.437 99.4

0.436 99.2

0.043 45.4

0.049 83.5

0.122 80.5

0.096 68.8

0.104 96.9

0.231 98.7
0.249 94.5

0.252 96.2

0.377 99.5
0.313 92.5

0.346 94.9

0.253 97.7

0.207 98.8

0.186 97.1

Global 0.475 0.042 0.077 0.407 0.128 0.276

Regression assumes no intercept. :_NEAT 1991 is coccolithophore bloom data.

two different studies, there is some divergence concerning

the coefficients in the blue spectral region.

Figure la, from Bidigare et al. (1990), shows the weight-

specific absorption coefficient for the major pigment groups,
and Fig. lb shows the equivalent figure from Hoepffner and

Sathyendranath (1993). Figure 2 shows the actual pigment
absorption for the major pigments and the summed total
for measurements from a cruise to the Northeast Atlantic

(NEAT) in June 1991 (Holligan et al. 1993). For the latter,

the phytoplankton assemblage was dominated by cocco-
lithophores and small flagellates, yet these data are simi-

lar to the earlier studies with the total pigment absorption

dominated by chlorophyll a, PSC, and PPC--chlorophyll b
and chlorophyll c have less than 5% significance.

Bidigare et al. (1990) concluded accessory pigments do
not always co-vary with chlorophyll a over depth and time.

In this study, the relationships of accessory pigments to

chlorophyll a for the surface layers only, sensed by satellite
color imagers, are examined using data from a wide variety

of sources (published and unpublished). An examination of

the relationship between chlorophyll a and total pigments

(sum of chlorophylls a, b, c, PSC, and PPC) shows a robust
relationship (97% of the variance explained). Nearly 5,600

pigment determinations from many bio-optical provinces
were used in the analysis (see Fig. 3). Province by province

and cruise by cruise, the ratio of total pigment to chloro-

phyll a varied from 1.876-2.876 with a mean of 2.164.
The conclusion from this analysis could be that it mat-

ters little whether the algorithm product is chlorophyll a or

total pigments, since the relationship between these two
measures of marine phytoplankton biomass, on a global
level, are so tightly coupled. Two issues make this hy-

pothesis invalid:

1. The optical influence of the different pigment groups

(e.g., the chlorophylls and carotenoids) are quite dif-

ferent in the five SeaWiFS blue and green bands

(412, 443, 490, 510, and 555 nm).

2. The relative composition of carotenoids (e.g., PSC)

in different biogeographical (bio-optical) provinces

is not constant and varies significantly from cruise

to cruise and province to province.

This is demonstrated here by a thorough analysis of all

pigment interrelationships for seven widely differing bio-

geochemical (bio-optical) provinces:

• Greenland, Iceland, and Norwegian (GIN) Seas

1986-87 (Trees),

• Georges Bank (Hoepffner and Sathyendranath
1992),

• NEAT 1989-90 (United Kingdom) Biogeochem-

ical Ocean Flux Study (BOFS),

• NEAT 1991 BOFS (Trees),

• Equatorial Pacific (EqPac) 1992 (Spring and

Fall),

• Antarctica 1992 BOFS (Sterna), and

• Bermuda Atlantic Time-Series Station (BATS).

Note that the total pigment to chlorophyll a relationships

for all combined data are highly correlated as shown in
Table 1, with the major pigment relationships shown in

Fig. 4. Examining the data province by province, it is evi-

dent there are widely varying ratios of the concentrations of
chlorophylls a, b, c, PPC, and PSC (Ca, Cb, Co, Cpp, and

Cps , respectively) to total pigment concentration (CTp)

as shown in Table 2 and Fig. 5a-g.

This analysis shows that for chlorophyll a, chlorophyll c,
total carotenoids, and PSC, the intraprovince covariance

is extremely tight for all provinces (R 2 is 96-99% for chlo-

rophyll a to CTp), although the coefficients of variance dif-
fer: notably, the fraction of chlorophyll a is lowest in the

3
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GIN Seas (0.367), and highest in Antarctica (0.514). The

low fraction in the GIN Seas is partly compensated by

the high fraction of chlorophyll b (0.085) and chlorophyll c

(0.103). In contrast, the fraction of carotenoids, mostly

PSC, is lowest in Antarctica (0.295) and relatively constant

elsewhere; relative to chlorophyll a, there are substantially

more carotenoids in the GIN Seas than anywhere else and

only here are they the major pigment group and exceed
the fraction for chlorophyll a.

The global mean fraction of chlorophyll a is close to 0.5

(depressed only by the GIN Seas data), whereas, the global

mean fraction of total carotenoids is about 0.4. The global
mean fractions of chlorophylls b and c are 0.042 and 0.077,

respectively, and are most significant in the GIN Seas.

Chlorophyll b is practically insignificant in the Antarctica,

NEAT, and the BATS data. The global mean fraction of

PPC is 0.128, over 20% of the total pigment composition in

BATS and EqPac data (both of which are high light) and

relatively low in the Antarctica (0.043) and NEAT 89-90

data, both of which are low light environments.

The extremes of the interpigment variance, from pro-

vince to province, is highlighted in Table 3 and Figs. 5g-i,

which shows the ratio of total carotenoids (Cpp + Cps)
to chlorophyll a (Ca), and to total chlorophyll (Cabc). The
latter being the sum of chlorophylls a, b, and c. The lowest

ratio (0.522) is found in Antarctica and the highest ratio

(1.129) is found in the GIN Seas. These extremes are re-

duced somewhat if the carotenoid to total chlorophyll ratio

is considered (0.416 for Antarctica and 0.738 for the GIN
Seas).

Table 3. Global interpigment ratiost.

Region

Antarctic

NEAT 89-90

NEAT 91

GIN Seas

Georges Bank
BATS

EqPac

Cpp'_-Cps

C_

R 2

0.522 94.3

0.835 94.8
0.814 92.9

1.129 86.3

0.665 95.0

0.824 98.8

0.911 98.2

Cpp'+Cps

Cabc

R 2

0.416 97.9

0.735 97.2

0.745 91.9

0.738 84.5

0.549 96.3
0.715 98.3

0.711 97.2

Global 0.814 0.658

t Regression assumes no intercept.

Using the radiances LWN(443) and LwN(550), these
differences in the relative pigment concentrations would

lead to significant differences in the coefficients of a stan-

dard two-band algorithm for each of these different biogeo-
chemical (bio-optical) provinces, because of the different

contributions to the optical absorption from each pigment
at 443 and 550 nm. It is likely that multiband algorithms

(3, 4, and 5 wavelengths) designed to account for the in-

fluences of different pigments on the absorption at each
waveband, may produce algorithms that would have more

widespread application.

3. BAND-RATIO ALGORITHMS

The approach adopted here, in line with the tried and

tested methods used for CZCS, is essentially empirical, al-
though, as is the case with the mainstream semianalyti-
cal SeaWiFS algorithm for chlorophyll a, the methods are

validated by recourse to standard bio-optical, hydrological

models. By this means, semi-empirical algorithms are de-

veloped, whereby analytical methods are used to propose
the form of the algorithm, while empirical methods are
used to determine the numerical coefficients.

The two-band (blue to green ratio) algorithms used

for CZCS, developed by empirical methods (Clark 1981)

or semianalytical models (Gordon et al. 1988), were in
fact remarkably successful for processing and interpreting
CZCS imagery, dependant as they were, on high accu-

racy in-water measurements of normalized water-leaving
radiances, LWN(A), and concurrently determined pigment

concentrations. Any errors in the historical CZCS pig-
ment databases are a result of the sensor measurements

(radiometric accuracy and stability, as well as atmospheric
correction procedures) and not a result of the algorithms

employed. The NET database of water-leaving radiances
and in situ pigment measurements, although restricted in

its geographical and seasonal coverage, is still the major

reliable source of data for algorithm development and is
used in this paper for these reasons.

Recently, the NET database has been reworked for the

SeaWiFS wavelengths and bandwidths using binomial or

polynomial curve fitting procedures to generate a range

of empirical algorithms, which successfully explain high
percentages of the variance between the variables. All of

these are completely satisfactory as SeaWiFS algorithms,

and with the greater precision of the SeaWiFS sensor, they

should provide accurate interpretations of the imagery (af-
ter atmospheric correction). These algorithms are listed

in Table 4. Using NASA Airborne Oceanographic Lidar
(AOL) data from the North Atlantic Bloom Experiment

(NABE) in May 1989 (Hoge and Swift 1993) to simulate
SeaWiFS data, Aiken et al. (1992) demonstrated that com-

binations of two-band ratios could successfully explain a

greater percentage of the variance between pigment and
radiance ratios than any single two-band ratio on its own

(Table 5). Similar results were obtained by Aiken and

Moore (1995), using data from a bio-optical model with
the values for absorption and scattering coefficients taken
from the literature. Algorithms for the other constituents

of the water column could be derived from the same syn-
thetic data (see Table 6).

In the following section, an attempt is made to jus-

tify the validity of band-ratio algorithms, employing sim-
ple two-band ratios or linear combinations of more than

two ratios. These can account for a greater percentage of
the variance between variables in the NET data, because

each two-band ratio can be related to a specific property
of the bio-optical assemblage, which can be demonstrated

by recourse to simple bio-optical models.
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Table4. AlgorithmsfromD. Clark.
Parameter Case Ratio Ao A1 A2 A3 R2

CTp 1 2 + 3 + 4:5

CTP 1 + 2 2 + 3 + 4:5

CT 1 2+3+45

CT 1+2 2+3+4:5
TSM 1 2 + 3 + 4:5
TSM 1 + 2 2 + 3 + 4:5

ISM 1 2 + 3 + 4:5

ISM 1 + 2 2 + 3 + 4:5

OSM 1 2 + 3 + 4:5

OSM 1 + 2 2 + 3 + 4:5

c(535) 1 + 2 2 + 3 + 4:5
c(535) 1 + 2 4:5

8.73 -11.20 4.43 -0.62

4.76 -5.36 1.70 -0.21

8.00 -9.99 3.77 -0.50
4.74 -5.37 1.65 -0.18

4.81 -7.56 3.32 -0.50

5.57 -8.64 3.83 -0.58

11.20 -18.70 8.77 -1.37

4.81 -7.56 3.32 -0.50

4.79 -8.02 3.75 -0.60
4.39 -7.29 3.35 -0.53

3.56 -4.53 1.44 0.15

-0.12 -1.74

97.0

93.6

95.8
92.2

72.2

84.6

60.1

72.2

74.1
83.6

86.6

81.6

Note: All are log10 regressions.

['able 5. AOL algorithms (Aiken et al. 1992' of the form a(Lu(A1):Lu(Ae))_(Lu(A3):Lu(A4)) _.

A1 A2 A3 A4 a fl 3` R 2 N

410 555

440 555

490 555

440 555 410 440
440 555 440 490

0.78 -2.90

2.02 -2.84

2.51 -2.77

1.88 -2.47 2.71
2.69 -2.64 4.04

64.1 753

86.3 753

92.8 753

86.8 733
93.7 733

Table 6. Model algorithms (Aiken and Moore 1994) of the form (_(R(A1):R(A2))Z(R(Aa):R(A4)) _

Algorithm A1 A2 A3 A4 a /3 3' R 2

Chlorophyll

DOC

412 555

443 555

490 555

443 555 412 443

490 555 412 555

412 555

443 555

490 555

443 555 412 443

490 555 412 555

1.87 -1.87

1.53 -2.15

1.77 -2.71

0.52 -2.41 -5.20

1.05 -4.66 -5.37

1.44 -0.92

1.04 -0.56
0.97 -0.51

1.33 -1.10 -10.2

-1.67 3.51 -14.8

69

89

95

95
69

28

12

6

90
77

4. BIO-OPTICAL MODELS

4.1 Analytical Basis of Band-Ratio Models

Water-leaving radiance is a function of the downwelling

light field, the interface effects, and the inherent optical

properties (IOPs) of the water column constituents inte-
grated over 1-2 optical depths. Analytically, it can be

expressed as

[(1- p)(1- _)R]
LWN = F0 [ n_(_ ---rR)-Q J (1)

where F0 is the extraterrestrial irradiance, n is the refrac-

tive index of seawater, R is the irradiance reflectance, p is

the Fresnel reflectance at normal incidence, _ is the Fres-
nel reflectance for sun and sky irradiance, r is the air-water

reflectance for diffuse irradiance, and Q is the ratio of up-

welling irradiance to radiance, which varies with the an-
gular distribution of the upwelling light field, and is equal
to r for an isotropic distribution. The (1 - p)(1 - _5)n-2

term gives the effect of the air-water interface, and shows
a weak relationship with wavelength, varying as the refrac-
tive index of water. The term 1 - rR can be assumed to

be unity in Case-1 waters.
Assuming the interface term is constant, the ratio of

remotely sensed water-leaving radiances at wavelengths Ai

and )'5, respectively, is expressed as

LO = R(A,)Q(£j)Fo(A,) (2)
R(Aj)Q(A,)Fo(Aj)'

9
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wheretheexpressionL,:j is a shorthand form for the ratio

Lw_v(X,) /LwN(Aj).
Q shows a weak relationship with wavelength, which

is analytically difficult to determine, the main factor be-

ing the relative change in scattering phase function (Morel

and Gentili 1991 and 1993). The main determinant of the
radiance ratio is the irradiance reflectance R. This may be

expressed as

chlorophyll biomass absorption can be partitioned accord-

ing to the functional groups of pigment. This includes

chlorophyll a, b, and c; the photosynthetic carotenoids;
and the photoprotectant carotenoids as per the following
formulation:

Ca¢ = a_Ca + %C b + acCc,

-[- apsCps + appCpp
(6)

=
[ a(A) J'

(3)

where G(#0, A) represents the effect of the downwelling
light field; bb(A) is the backscatter coefficient; and a(A) the

absorption coefficient. The IOPs, a(A) and bb(A), are the

sum of the optical properties of pure seawater and the opti-

cally active water column constituents, i.e., chlorophyll (a,

b, and c), carotenoids, dissolved organic matter (DOM),
and detrital particulates.

Substituting for R, the normalized water-leaving radi-

ance ratio, Li:j, is expressed as

L,:j = g[a(Aj)bb(Ai)F°(A_) ]
La( Adbb(Aj)Fo( A_)J '

(4)

where g is assumed to be a constant that consists of the

ratios of the air-sea interface effects, the effects of the light

field [the Morel and Gentili (1991) f factor], and the rel-
ative spectral variation of Q. Using Morel and Gentili's

(1993) figures for the spectral variation of f/Q, g will be

1 + 3.5% with the remotely sensed viewing geometry. For

the purposes of discussion of the effects of the water con-

stituents, the factor g has been omitted (it is assumed to
be unity).

By partitioning the IOPs of the constituents of the wa-

ter into the sum of the parts, Li:j can be expressed as

L_:f
aw(Aj) + ag(Aj)G + acz(Aj)C

a_(A,) + %(A,)G + a,(A,)C

bbw(Ai) + bbp(Ai)P F0(Ai)
× × --

bbw()_j) + bbp()_j)P Fo()_j)'

(5)

where Ca, C b, Co, aa, a b, and ac are the concentrations

and specific absorptions of chlorophyll a, b, and c, respec-

tively; Cps, Cpp, aps, and app are the concentrations

and specific absorptions of the photosynthetic and photo-

protectant carotenoids, respectively.
It can be seen from this that band-ratio algorithms are

almost wholly dependant on the IOPs. The CZCS algo-

rithm, or the SeaWiFS equivalent, can be taken as a case

study. The A,:555nm algorithms (where A_ -- 412, 443,

490, or 510 nm) can be approximated by the following ex-
pression:

Li: j

a_(Aj) + ag(Aj)G + aabc(Aj)C

a_(A_) + ag(A_)G + aab_(Ai)C

bb (A,) +
× × --

bbp(Aj)P F0(A3)"

(7)

The particulate backscatter, bbp, will come from both
detrital material and phytoplankton; this backscatter, al-

though correlated with chlorophyll biomass, shows a highly

variable relationship from province to province. For all but

the most oligotrophic waters, bbp is greater than bbw at

555nm (or 550nm for CZCS). Bricaud et al. (1981) show
for typical oceanic particle distributions that the wave-

length dependence for bbp is approximately A - 1; thus,
the backscatter term in (7) can be approximated by an

empirical constant.

Bricaud et al. (1981) showed for most oceanic areas,

DOM absorption is correlated with chlorophyll-specific ab-

sorption, and ag(443) is approximately 0.3 x a¢(443). If

this DOM dependence is used in (7), then the radiance
ratio can be approximated by

where aw and bbw are the absorption and backscatter co-

efficients of water, respectively; P is the particulate con-

centration including detrital material, and bbp is its spe-
cific backscatter coefficient (normally normalized to chlo-

rophyll a concentration); G is the concentration of DOM

and DOM-like absorbers and ag its specific absorption; and

C is the chlorophyll biomass concentration and a¢ is its
specific absorption.

In this formulation, the backscatter has been decou-

pied from the chlorophyll concentration, and it is assumed

that the relationship between the backscatter and phyto-

plankton biomass depends on ecological, rather than op-

tical, correlates. The formulation of biomass absorption

does not include the package effect (Duysens 1956). The

Li:j = Bb La,.(A,) + %_(A,)CJ Fo(Aj)' (8)

or

+ CA_ ' (9)

where Bb, B, Aj, and A_ are arbitrary constants. In the
case where Lwg(555) is the reference band of the two-

band ratio and when ag is much less than aw (i.e., C less

than 1.0mgm-3), the radiance ratio can be further ap-
proximated to

B

L_:j - I + CA (10)

10
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In the analysespresentedhere,thehyperbolicequa-
tions(9)and(10)arethebasicmodelsforthetwo-band
ratioalgorithmsthatuseSeaWiFSband5ratherthanthe
conventionalmodelderivedfromalog-logfit. Thesehyper-
bolicmodelshavetheusefulpropertythat thecoefficient
B can be expressed in terms of the IOPs of pure seawater,

i.e.,

B = g[_)___[bbw(A,) aw(Aj)a_(Ai)F0(Aj)F°(Ai)]j, (11)

and that there is a lower limit to the ratio of normalized

water-leaving radiances

Li:¢ = B

This lower limit is useful, since it determines the range of
applicability of the algorithms, i.e., the point where the

radiance ratio does not give a meaningful estimate of chlo-

rophyll a or pigment.

The factor g in (11) corresponds to the ratio of the

Morel and Gentili f/Q ratio at bands i and j. Morel and
Gentili (1993) found this ratio to be 0.804 for the 440 and

565 nm wavelengths, over the whole range of water types

and #0. Comparisons of the clear water B values in Tables

11 and 12 show the f/Q ratio to be 0.799 for the 443:555
band ratio. This further validates the hyperbolic model,

since discrepancies between model values can be explained

in terms of light field effects.

4.2 Model Development

Two bio-optical models were developed to support the

analysis of the various algorithms: the first to determine

the differential effects of the bio-optical determinands on
the radiance ratios; and the second to determine the ef-

fects of the biological variability and intercorrelation of
the water column constituents on the radiance ratios. The

purpose of the second model was to test algorithm formu-

lation on sets of simulated data that contained variability

found in a wider range of bio-optical provinces than the
NET data.

Both models use (5) and (6) with a full pigment assem-
blage. The package effect was not included in either model.

Raman emission was included in the second model, using

an approximation of Marshall and Smith's (1990) expres-
sion for surface Raman reflectance:

, bRE_ (13)
LWN = 6.0Qa + a_'

where E_ is the downwelling irradiance at the Raman exci-
tation wavelength, bR is the Raman scattering coefficient,

a _ is the absorption at the Raman excitation wavelength,

and a is the absorption at the Raman emission wavelength.
Without the Raman term, the model does not give a rea-

sonable approximation to the optical properties of pure
water.

4.2.1 Model Parameterization

All the data were integrated over the SeaWiFS band re-

sponses (Barnes et al. 1994). Data for pure seawater scat-
tering were taken from Morel (1974) and for pure seawa-

ter absorbancy from Smith and Baker (1981). Particulate
backscatter was scaled to the backscatter from Gordon et

al. (1988), at 443nm and 1 mgm -3 chlorophyll; backscat-

ter for other wavelengths was calculated using an a -n de-
pendence, with n = 1. The exact value of n, however, will

depend on the oceanic particle size distribution (Morel and

Prieur 1977). Carder (pets. comm) indicates n depends on

the R(443):R(490) ratio, which is dependent on DOM and

the carotenoid to chlorophyll ratio. DOM absorption was
determined using a curve of the form

ag(A) = ag(375)e -S(_-375) (14)

using a slope S of 0.014 and a base value of 0.06 (Bricaud

et al. 1981), the slope being identical with that used in
Carder et al. 1994. Detrital material was assumed to have

the same basic spectral shape as DOM and was included

in the model with a backscatter to absorption ratio of

1:2.18 derived from the transmission and absorption data

of Prieur and Sathyendranath (1981) and assuming the
San Diego harbor scattering phase function (Petzold 1972).

Specific pigment absorption was taken from Bidigare et al.

(1990). The model parameter values are summarized in
Tables 7 and 8. The estimated global averages for pigment

are shown in Table 9, and compared with data for chloro-

phyll specific absorption from Prieur and Sathyendranath

(1981).

4.2.2 Global Determinands

This model was used to determine the differential ef-

fects of the biogeochemical parameters on the two-band ra-
tios. The values of these parameters were fixed for a chloro-

phyll value of 1.0 mg m -3. The pigments were fixed at the

global ratios of C_,:Cb=5.77; C_:C¢=5.01; Ca:Cps=l.28;
Ca:Cpp-_5.32; determined from the global pigment data

set for chlorophyll a in the range 0.8-1.2. The particulates

were assumed to be phytoplankton only. The increase in

scattering effectively increased the phytoplankton specific
scattering. Detrital material increased scattering and the

base DOM absorption in the ratio 1:2.18.

4.2.3 BSM Data

The driving variable for the Bio-Optical Synthetic Mod-

el (BSM) was chlorophyll a; in each run of the model,

2,000 random data points were generated using a log uni-

form random variate with values of chlorophyll from 0.018-
20.08. These chlorophyll values were used to determine the

detrital, DOM, and pigment concentrations, and, hence,

bio-optical parameters using (6) and (7). Raman stimu-
lated emission was simulated using a randomly varying F0

from 60-150#Wcm -2 nm -1 using (13).

11
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Table 7. Inherentopticalpropertiesof bio-opticalconstituents.
Band A bbw bbp ato a_ a¢ t b R (A t )

1 412

2 443

3 490
4 510

5 555

0.0034 0.0031 0.016 0.034 0.050
0.0024 0.0030 0.015 0.023 0.058

0.0016 0.0028 0.021 0.012 0.045 0.00048
0.0013 0.0027 0.036 0.009 0.036 0.00042

0.0009 0.0026 0.067 0.005 0.019 0.00029

t Data derived from Prieur and Sathyendranath (1981).

Table 8. Inherent optical properties of phytoplankton pigments_;.

Band A a_ t aa a b ac a p s a p p

1 412

2 443

3 490
4 510

5 555

0.050 0.017 0.003 0.021 0.008 0.022

0.058 0.018 0.013 0.046 0.019 0.045
0.045 0.003 0.011 0.011 0.036 0.049

0.036 0.001 0.001 0.002 0.033 0.022

0.019 0.001 0.002 0.003 0.008 0.001

Data derived from Prieur and Sathyendranath (1981).
Data derived from Bidigare et al. (1991).

Table 9. Inherent optical properties of phytoplankton pigments weighted according to climatological ratios:_.

Band A aezt a_§ aa a b ac aps app

1 412

2 443

3 490

4 510
5 555

0.050 0.032 0.017 0.001 0.004 0.006 0.004

0.058 0.053 0.018 0.003 0.009 0.015 0.008
0.045 0.046 0.003 0.002 0.002 0.030 0.009

0.036 0.032 0.001 0.000 0.000 0.027 0.004

0.019 0.009 0.001 0.000 0.001 0.007 0.000

Data derived from Prieur and Sathyendranath (1981).

The absorbance values are calculated according to climatological ratios (C_:Cb=5.77, C_:C_=5.01, C,:Cps=l.28, and
Ca:Cpp=5.32). The data is from the GIN Seas, EqPac, NEAT, and the Antarctic.

§ ar_ = aa + ab q- ac + aps -[-app.

The variance for the scattering was derived from the

UK-BOFS database using c(670) and chlorophyll, for data

at or above the 10% light level. The variance of the c(670)
to chlorophyll ratio was found to be log-normally distribut-

ed with a variance of 0.823; since log variance is scale in-

variate, this log variance was used to generate the detrital

backscatter contribution. The variance for phytoplank-
ton backscatter was arbitrarily set at 0.100. The ratio

of detrital backscatter was twice the value of phytoplank-
ton backscatter; this figure was derived from Prieur and

Sathyendranath's (1981) brain(525). The pigment data was

similarly found to be log-normally distributed, with vari-

ances of 1.017, 0.683, 0.482, and 0.151 for chlorophyll b,

chlorophyll c, PSC, and PPC, respectively.

The variation of DOM absorption with chlorophyll is

dependant on oceanic conditions. Bricaud et al. (1981)

observe an almost constant background, a9(375 ) -- 0.06,
whereas Prieur and Sathyendranath (1981) and Carder et

al. (1989) show a weak correlation with chlorophyll a, and

Carder et al. (1986) show a good relationship with chloro-

phyll a. The assumption applied here is that ag co-varies

with chlorophyll a, but with a log variance of 0.21, derived

from NABE DOM concentrations. The relationships de-

scribed above resulted in the 95% ranges in the model in-
put data of 0.023-15.02 for chlorophylla; 0.001-1.70 for

chlorophyll b; 0.002-1.87 for chlorophyll c; 0.015-9.69 for
PSC; 0.003-5.20 for PPC; and 0.024-13.62 for DOM rela-

tive absorption.

In order to compare the results from the BSM data with

the NET data, it was necessary to simulate pigment data.
Trees et al. (1985) showed that the fluorometric method

(Yentsch and Menzel 1963) of chlorophyll a determination

was affected by coexisting chlorophyll b and c. Using the

following figures, derived from Trees et al. (1985), and vali-
dated by comparison with NEAT HPLC data, fluorometric
chlorophyll a was calculated as

Cs = 0.941C_ - 0.292C b + 0.371Cc (15)

and pigment as

Ps = 1.166Ca + 0.616C b + 0.544Cc. (16)

12
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5. DATA ANALYSES

5.1 Algorithm Development

In the previous section, a theoretical basis for band-
ratio algorithms using standard hydrological, bio-optical
models was established. In this section, these models are

used with selected data sets to derive empirical fits of the

data to produce the algorithms for SeaWiFS. The inher-
ent statistical properties of the NET data are explored to

establish a baseline for comparative reference. Using the

conventional power law model and the pigment definition

for the CZCS algorithms

Ca + Cp = a'(L,:j) _' (17)

or

ln(Ca + Cp) = ln(a') + /Yln (Li:j). (18)

Table 10 shows the coefficients of the ln-ln regression

and the percentage of variance explained (R 2) for pigment

(Ca + Cp) regressed against all two-band combinations

for the NET data (SeaWiFS band set), and Fig. 6 shows
the scatterplots for the major ratios. The regressions fall

into four groups, which depend on the wavelength of the
reference radiance. The first group, reference LWN(555),

shows very high R 2 values for all two-band ratios, in-

dicating that Ca + Cp is highly correlated in all cases.
The increasing value of R 2 from 412 to 443 to 490 to 510

is surprising since the 490 and 510 bands are at longer

wavelengths than the chlorophyll a (or phaeopigment) ab-

sorption peaks. This is due to the highly correlated co-
occurrence and co-variance of chlorophyll and carotenoids

(which absorb at 490 and 510nm), demonstrated in Sec-

tion 2, which means carotenoids effectively and accurately

behave as surrogates for chlorophyll at the longer wave-

lengths. Coupled with this effect, the longer wavelengths
are least affected by the absorption of light in the blue

spectral region by DOM, which contaminates the 412 and
443nm wavebands to the maximum extent. The second

and third groups of band ratios (reference bands 510 and

490 nm, respectively) also show increasing R 2 values with

increasing wavelength, 412 to 443 to 490 nm. The same ex-

planations of the effects of co-existing DOM and accessory

pigments (carotenoids) apply. In each case, the percentage
of variance explained is smaller than for the first group as

the reference wavelengths are influenced somewhat more

by carotenoid absorption.

Only the LWN(412):LwN(443) ratio is poorly corre-
lated with pigment; (this is understandable since these
wavebands are influenced most significantly by the absorp-

tion of DOM and detritus which have similar absorption

spectra). Table 10 shows the ln-ln regression coefficients
and R 2 values for the BSM data set. The scatterplots

for the LWN(555) base ratios compared to NET data are

shown in Fig. 7. Interestingly, these regressions show ex-
actly the same patterns of coefficients and R 2 values for the

four groups of band ratios as the NET data (Table 10). The
R 2 values are considerably higher for the BSM data (up

to 96%) where the only source of variability is from the
bio-optical determinands. The higher R 2 values are ex-

plained by the fact that no measurement error was added
to the BSM data. The inference from this observation is

that since the synthetic pigment and radiance data are so

highly correlated, the basic bio-optical model used in the

synthesis and the parameter values employed are both re-
liable.

Using simple bio-optical models, a hyperbolic function

of chlorophyll was found to be the simplest expression
for the relationship for the band ratio, see (10), with an

asymptotic coefficient (B) as C --* 0, which relates to the
IOPs of pure water given by (11). This simpler model is

only robust where chlorophyll is low, and can be used to

empirically determine the clear water B. Using the clear

water B, the full range of data (Case-1 and Case-2) can

be fitted using the full model (9). Tables 11 and 12 show
the coefficients for the full model with Ca + Cp and Ca
and band ratios fitted for the NET data. Tables 13 and 14

show the coefficients for chlorophyll a and simulated pig-

ment for the BSM data. In all cases, the percentage of

variance explained is high, up to 91% for the NET data

and up to 96% for the key band ratios for the BSM data.

In all cases, this model provides a superior fit compared

with the ln-ln regressions.

Again, the primary conclusion from these findings is the

basic bio-optical models and parameters used are sound,

as demonstrated by their utility to generate relationships

with high confidence. A secondary conclusion is that these
methods, using synthetic data, are suitable for the gener-

ation of algorithms for parameters where there are few in

situ calibration measurements, but where there is a good

knowledge of the IOPs of the parameters (e.g., DOM, pig-

ments, etc.). It is suggested here that good in situ data

sets with a limited range of parameter values (e.g., NET
data which has no accessory pigment measurements) can

be bootstrapped to synthetic data to infer a greater num-

ber of parameters. It can be shown in these and other
analyses that there is potential for closure between ap-

parent optical measurements and synthetic measurements
that use IOPs.

5.2 Sensitivity Analysis of Ratio Models

Figure 8 shows the sensitivity of retrieved pigment con-

centration for each of the primary ratios (412:555, 443:555,

490:555, and 510:555). Table 15 shows symbolically the

effects on the remaining secondary band ratios, together
with the main ratios. At the level of chlorophyll a consid-

ered, detritus, DOM, and chlorophyll-specific scattering all

change the apparent chlorophyll retrieved and the ratios

by 5-10%, the effect being greatest in the blue part of the

spectrum and decreasing towards the green. It is surpris-
ing that scattering should depress the ratio and result in an

13
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Table 10. Logregressions of NET and synthetic simulated pigments with band ratios.

Band NET Ca + Cp BSM Ps
Ratio Intercept Slope R 2 Intercept Slope R 2

412:555

443:555

490:555
510:555

412:510

443:510

490:510

412:490
443:490

412:443

-0.339 -1.095 72.2

0.051 -1.284 81.7

0.696 -2.085 86.4
0.688 -2.864 86.8

-0.505 -1.533 58.7

-0.464 -2.209 74.4

0.627 -7.035 81.5

-0.791 -1.733 46.5

-0.924 -2.983 65.9

-0.601 -2.913 20.9

-0.199 -1.387 90.9

0.028 -1.562 95.1

0,322 -2.262 95.4

0.151 -3.541 95.9

-0.418 -2.193 84.4

-0.073 -2.702 87.8

0,604 -6.117 92.3

-0.967 -3.315 77.5

-0.605 -4.745 82.6

-1.629 -9.761 58.2

Table 11. NET data pigment curve fits.

Band Ratio

412:555

443:555

490:555
510:555

C A1 A2 R 2 C_t

13.14 ± 1.86 0.059 ± 0.07 16.79 ± 0.76 84.4 13.80

9.55 ± 1.08 0.068 ::t=0.05 9.68 ± 0.40 87.9 11.94
5.29 ± 0.37 0.232 ± 0.04 3.82 ± 0.16 89.8 5.67

3.07 ± 0.15 0.262 ± 0.03 1.94 ± 0.09 91.4 2.80

C_ adjusted for Raman scattering in model.

Table 12. NET data chlorophyll curve fits.

Band Ratio C A1 A2 R 2 Cwt

412:555 13.14 ± 1.86 0.081 ± 0.09 20.51 ± 0.94 83.3 13.80

443:555 9.55 ± 1.08 0.115 ± 0.07 11.04 ± 0.52 86.5 11.94
490:555 5.29 ± 0.37 0.328 ± 0.05 4.27 ± 0.21 88.5 5.67

510:555 3.07 ± 0.15 0.350 ± 0.04 2.44 ± 0.12 90.5 2.80

C_ adjusted for Raman scattering in model.

Table 13. BSM chlorophyll a curve fits.

Band Ratio C A1 A2 R 2 Cw t

412:555 13.82 ± 0.84 0.167 ± 0.03 23.09 =t=0.34 90.3 13.80

443:555 11.74 ± 0.52 0.279 ± 0.03 18.58 ± 0.24 92.7 11.94

490:555 5.35 ± 0.10 0.499 ± 0.02 7.42 ± 0.09 95.4 5.67
510:555 2.63 ± 0.02 0.662 ± 0.01 3.61 ± 0.04 95.8 2.80

C,_ adjusted for Raman scattering in model.

Table 14. BSM pigment curve fits.

Band Ratio C A1 A2 R 2 Cw_

412:555 13.82 :t=0.84 0.134 -4-0.03 17.74 ± 0.26 90.0 13.80

443:555 11.74 ± 0.52 0.219 ± 0.02 14.26 ± 0.19 92.6 11.94

490:555 5.35 ± 0.10 0.385 ± 0.01 5.69 ± 0.07 95.2 5.67

510:555 2.63 ± 0.02 0.510 ± 0.01 2..76 ± 0.03 95.6 2.80

C'_ adjusted for Raman scattering in model.
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Table 15.Sensitivityof ratioto modelsingleparameterchange.
Band Ratio Scat. Gelb. Detr. Chl. a Chl. b Chl. c PSC PPC

412:555

443:555
490:555

510:555

412:443

443:490

490:510

412:490

443:510

412:510

÷÷ ÷+÷÷ 4.÷÷÷ ÷4-

4.÷ ÷÷ ÷÷÷ 4-4- ÷

÷ ÷ ÷÷

4.

÷ ÷÷ 4,÷÷÷÷

4. ÷÷÷÷ ÷÷ ÷

÷4,÷

4. ÷÷4. ÷÷4.÷4. ÷÷

4. ÷ ÷4,4,÷÷ 4.÷ 4.

4-4- 4.4.÷ 4.4.4.÷÷ ÷÷

4. ÷

÷÷÷ 4-

÷4.4.

Note: < 3% +; 3 - -5% 4-+; 5 - -7% +++; 7 - -20% ++++; > 20% +++4-+ (and similarly for negative values).

Table 16. Principal component factor loadings.

Band Ratio F1-NET F1-BSM F2-NET F2-BSM F3-NET F3-BSM

412:555

443:555

490:555
510:555

412:443

443:490

490:510

412:490

443:510

412:510

÷

÷4-

4-4-÷

÷4.÷

÷÷

÷

÷

÷4.

÷÷4.

4.÷4.÷

÷

4.4.÷÷4. ÷÷4-4-4-

÷

4-÷÷ ÷4-÷

÷4-

÷

÷÷

÷

4-4-4-4-4-

÷4-4-

÷

÷÷4,÷÷

÷÷4.÷

÷÷

÷+÷÷÷

÷÷÷

Note: < 3% +; 3 - -5% ++; 5- -7_ +++; 7- -20% ++++;

increase in apparent chlorophyll retrieved, but it should be

remembered that the ratios have been explored in a region
where backscatter from water is dominant.

Chlorophyll a has a dominant effect on the 412:555 and

443:555 ratios, contrasted with photosynthetic carotenoids

which affect the 490:555 and 510:555 ratios. The photopro-
tectant carotenoids effect most of the band ratios with the

dominant affect being on the 490:555 ratio. Chlorophylls
b and c have only minor affects on the band ratios, and

major province difference would be needed for their affect

on band ratios to become important. The only two-band

ratios affected by all pigments are the 443:555 and 490:555,

with the later being less affected by DOM or detritus.

Of all the secondary ratios, the most useful may be

412:443, which is not influenced by pigment but is strongly

influenced by DOM and detritus. For determining ac-
cessory pigments, the 412:490, 443:510, and 412:510 ra-

tios seem most promising, since they show a differential
influence between photosynthetic carotenoids and chloro-

phyll a. The response of the different ratios to differing
biogeochemistry, would imply that most, if not all, of the

optical and biogeochemical information found in upwelled

spectra is contained in the primary and secondary ratios

considered in this study.

> 20% +4.+4.+ (and similarly for negative values).

5.3 Analysis of NET and BSM Data

The NET data represent high quality optical data, with

limited measures of biogeochemical parameters other than
chlorophyll a and phaeopigment. In order to determine the

bio-optical variability of the data, principal components

analysis was used, and the results were compared with the

BSM data set containing variability from a wider range of
provinces than those present in the NET data. The aim
was to determine if the NET data contained sufficient vari-

ability to generate global algorithms, and to determine how

far bio-optical variability reflects ecosystem variability.

Analysis of the NET data log radiance ratios, by prin-

cipal components analysis using varimax rotation, showed

that three factors could be extracted explaining 99.6% of

the total variance. These three factors explained 57.5, 41.2,

and 0.9 percent of the variance, respectively. The relative
factor loadings are shown in Table 16, with the normal-

ized factor loadings for the LWN(555) based ratios shown

in Fig. 9. The first column of each factor pair shows the

factor pattern for the NET data. By comparison with the

previous analysis of radiance ratio patterns, the first two

factors, F1 and F2, can be ascribed to pigment biomass and

detritus concentration, respectively, with the first factor

18
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showinga highcorrelationwith logpigment(R2_-89.5%)
or logchlorophyll(R2=89.2%).Themeaningofthethird
factor,F3, is more difficult to determine, but the principal

loadings are on those ratios which correlate with carotenoid

concentration, notably 490:510 and 510:555. This factor
could be related to absolute carotenoid concentration or

relative pigment abundance (PSC:PPC ratio).
The BSM data showed a similar factor pattern to the

NET data with 99.9% of the total variance explained, and

the three factors explaining 52.3%, 43.2%, and 4.4% of the

variance, respectively. The change in the total variance ex-

plained is probably attributable to the BSM data assuming

a perfect radiometer; the relatively small change in total
variance explained indicates the quality of the NET opti-

ca] data. The higher percentage variance explained by the

third factor, reflects the greater range of pigment and detri-
tal variance introduced into the synthetic data. The factor

profiles are shown in Table 16, and the patterns for F1 and
F2 are almost identical to the NET data. The comparison

with Fa, is less clear, but both NET and BSM data show

loadings on ratios that relate to carotenoid concentration.
The difference in the precise loadings of the third factor is

likely to be caused by the lower pigment variability in the

NET data compared with the BSM data. This hypothesis
needs to be tested further using data sets that have concur-

rent radiance measurements and HPLC pigments. These

will become available as part of the SeaWiFS calibration

and validation activity.
In the BSM data, the underlying biogeochemistry is

known a priori; thus, the factors can be related to their

principal driving variable. F1 shows the best relation-

ship with total pigment, chlorophyll (a, b, and c) , and
carotenoids, with the best correlation being with total pig-

ment (R2=89.9%). F2 shows little correlation with pig-

ment, correlating with the total particulate concentration
and total DOM-like absorbance (i.e., detrital absorbance),

but with a poor R 2 of 58.1% and 62.3%, respectively. F3
shows low correlations with all variables, the best being

with DOM-like absorbance and photosynthetic carotenoids,

with R 2 of 30.6% and 27.6% respectively. This would still

seem to indicate F3 represents the chlorophyll to carotenoid

ratio, since an increase in DOM has almost the same ef-
fect on a normalized SeaWiFS spectrum as an increase in

carotenoids.

Figure 9 shows the spectral differences in the factors,

derived by selecting data where each factor was lower than
the factor average. F1 and F2 show similar patterns in

both the NET data and the BSM data, although for F2

the typical DOM curve is more pronounced in the NET

data than in the BSM data. F3 shows a greater disparity
between the NET data and the BSM data; the main affect
in the NET data is the 490:555 ratio whereas in the BSM

data, it is the 510:555 ratio. The spectral patterning of

the change in the NET data would suggest a shift in PPC,

compared with a shift in total carotenoid in the BSM data.
The change in PPC is probably due to light adaptation in

the NET data, a factor that was not included in the model.

Figure 5i shows such a shift in pigment ratios; high light

areas, e.g., EqPac and BATS, show a higher PPC relative
to PSC ratio or PPC to carotenoid ratio.

It is surprising that the information in the NET and
BSM data sets can be reduced to three factors, whereas

there are five factors in the biogeochemica] variables that

generate the BSM optical data. This may be due to the
limited range of bands chosen, but the reduction of optical

data to three factors is supported by a number of other

studies. Sathyendranath (1981), using principal compo-
nents analysis on log reflectance data from 400-650nm

with a resolution of 10nm, found three factors explain-

ing 57.6%, 42.1%, and 0.2%, respectively, of the variance.

Garver et al. (1995), using empirical orthogonal factor

analysis on absorbance spectra from 400-700nm, found
detrital and phytoplankton components explaining 54%

and 44%, respectively, of the variance; the residual 2% of

variance was assumed to be pigment variability. Mueller

(1976), using principal components analysis on airborne

spectrometer data from 400-750 nm with a resolution of 5-
7.5 nm, found four factors explaining 77.6%, 17.21%, 2.4%,

and 0.9%, respectively, of the variances; the first three fac-

tors were related to pigment, showing similar patterns to

the NET factors, but the fourth factor was unrelated to

pigment and may have been due to residual atmospheric
effects.

From this and other studies, it can be concluded that

for oceanic waters, the SeaWiFS band set provides suffi-

cient information to adequately specify the upwelling spec-

trum, and that the full compliment of ratios contain the

full variance of the original upwelling radiance. The total

variability in the optical signal can be reduced to three fac-

tors, although there are more factors in the underlying bio-

geochemistry. This fact has two implications for algorithm

development: first, it is unlikely that more than three suit-

ably chosen ratios are needed to retrieve any parameter to

maximum accuracy; and second, different biogeochemical

signals are not uniquely converted to optical signatures,

implying that the perfect single biogeochemica] parameter

algorithm may not exist.

5.4 Multiband Algorithms

Multiband algorithms were developed using two meth-

odologies, the first used empirical multiple regression of log

ratios to log pigment, i.e., fitting curves of the form

In(Co+cp) = -o + .lln(L,:j)
-'1- a21n(Lm:n)

(19)

which is equivalent to

k

ca÷cp -- aII (20)
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wherek represents an index to two vectors of band ratios

kl and k2. The second method used linear combinations

of the hyperbolic estimates. Before examining these algo-

rithms, it is appropriate to make a statistical comment.
First, the R 2 values returned by multiple log regression

are not comparable with those returned by either nonlin-
ear curve fitting or by linear multiple regression. Second,

a small improvement in R 2 can be obtained by shifting the

position of one outlier, and may not be a real improvement
in the quality of calibration. With these caveats in mind,

log-log multiple regressions are considered hereafter.
Table 17 shows multiple regression algorithms for the

NET data. The best R 2 achieved is 87.3% (for the 443:490

and 443:555 combination), which represents a marginal im-

provement of the variance explained compared with 86.8%

(510:555 in Table 10). Compared to the R 2 for the 443:555
ratio, however, an improvement of 6.6% is achieved. Fig-

ure 10a shows comparison of this algorithm with the single

ratio hyperbolic model; the difference between the two are

slight, but a few points are pulled closer to the 1:1 line.
The robustness of this algorithm was tested with some

data collected in the Antarctic (BOFS Sterna), where there

are known differences in the optical properties of the wa-

ter (Mitchell and Holm-Hansen 1991 and Sullivan et al.

1993).
Figure 10b shows a comparison between the NASA

CZCS chlorophyll algorithm and the multiple regression

algorithm. The retrieval shows a less biased estimate of
chlorophyll than the NASA algorithm, with a slope closer

to 1:1. The retrieval is noisier, and this may be due to

radiometric problems, since the noise is additive and in-
creases as more bands are used. It is not known if this will

be a problem for SeaWiFS. It is noteworthy that a retrieval

developed on one data set, should show an improvement
with another from a different bio-optical province.

Table 18 shows the algorithms developed from the BSM

data, with the R 2 being in the range 93.3-98.1%. Since the

synthetic model assumes no error in measurements, these
are the best retrievals to be expected unless Raman emis-
sion is modeled. The difference between these R 2 and the

NET data R 2 is best explained by the pigment analysis

methodology, since an error of 5-10% is expected in the
Yentsch and Menzel (1963) chlorophyll. Table 18 also pro-

vides a list of algorithms for new biogeochemical variables

that may be tested when data sets with more extensive
sea-truth measurements than the NET data become avail-

able.

Table 19 shows a test of multiple regression algorithms
restricted to the SeaWiFS bands which are compatible

with the CZCS. Except for total pigment, no improve-
ment could be found taking a band combination. The list

demonstrates the alternative interpretations that can be

derived from CZCS imagery; in particular it emphasizes
the fact the 510:555 ratio is a carotenoid retrieval.

Multiple regression is a more appropriate technique for

the hyperbolic estimates, since the estimates of pigment

or chlorophyll are linear. Such algorithms are more attrac-
tive since the intermediate estimates can be interpreted

in terms of pigment. Table 20 gives the results of linear

combinations of pairs of estimates. In all cases, except
the 443:555 and 510:555 combination, there was no sig-

nificant intercept for the regression. The best retrieval
was for the 443:555 and 490:555 combination, with an R 2

of 95.3%; this algorithm is shown in Fig. lla, compared

with the 443:555 hyperbolic fit. Compared with the ln-ln

multiple regression in Fig. 10a, there is less bias at low

pigment concentrations, whilst retaining the 1:1 relation-

ship at high pigment concentrations. The results for the

Antarctic data shown in Fig. llb are encouraging, with

points pulled closer to the 1:1 line; however, there may

be a slight tendancy to overestimate pigment in this data.
The 443:555 and 490:555 combination has advantages for

implementation as a remotely sensed algorithm; it avoids
the 412 nm band where atmospheric correction may be a

problem, and tends to the 490:555 algorithm in high pig-
ment waters where LwN(443) tends toward zero.

6. IMPLEMENTATION

The algorithms shown in the previous sections are all
valid for the data and models considered. The develop-

ment on an interim CZCS compatible algorithm involves

consideration of the sensor aspects and state-of-the-art at-

mospheric correction. The data to be obtained from the
SeaWiFS instrument is different from modeled and sea-

truth data in three important aspects:

1) The data is digitized on a limited scale---10 bits

at the top of the atmosphere compared with 16
bit resolution for the NET data and infinite res-

olution for the model data;

2) Atmospheric attenuation of the water-leaving
signal will reduce the effective level still further,

especially at the shorter wavelengths, i.e., bands

1 and 2; and

3) The model and NET data are both based on

nadir viewing geometry, whereas the SeaWiFS
instrument will view up to 58.3 ° off nadir.

To address the first two points, digitization of the data

has been simulated by assuming a sun angle of 50 ° and an

atmospheric transmission of 0.5. This assumption results

in a dynamic range of about 160 counts for the water-

leaving radiance, and corresponds to fairly high atmos-

pheric turbidity in the early spring, e.g., the North Atlantic

bloom. Figure 12 shows the mean water-leaving radiance
for bands 1-4, compared with pigment averaged into log

ranges. For bands 1 and 2, there is no detectible water-

leaving radiance above 10mgm -3, compared to bands 3

and 4 where there is significant water-leaving radiance.
The issue of viewing angle can only be addressed theo-

retically at present, since there are limited data, e.g., Po-
larization and Directionality of the Earth's Reflectances
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Table 17. NETdatalogmultipleregressionalgorithms.
Variable Constant Coeff. 1 Ratio 1 Coeff. 2 Ratio 2 R 2

C_ 0.45 1.57 412:510 -2.46 443:555 84.7

C_ 0.94 3.47 443:490 -2.58 443:555 86.4

Ca + Cp 0.59 1.48 412:510 -2.41 443:555 85.4

Ca + Cp 1.09 3.39 443:490 -2.55 443:555 87.3

Table 18. BSM data log multiple regression algorithms.

Variable Constant Coeff. 1 Ratio 1 Coeff. 2 Ratio 2 Coeff. 3 Ratio 3

Cs -0.040

Cs 0.345

Ps 0.194

P 0.918

P 0.229

G 0.616

G 0.657

Cpp + Cps -0.133

Cpp + Cps -0.174

DOM -0.012

DOM -0.021

C_bc 0. 724

CTp 1.063

4.60 412:510
4.60 443:490

4.99 412:510

2.64 443:510

10.77 490:510

2.44 412:443

12.49 412:510

3.93 412:443

0.61 443:490

4.69 412:443

0.39 443:490

0.58 412:443

--2.24 490:555

-7.22 443:555

-2.89 443:555

-7.98 443:555

-2.77 412:555

-4.58 443:555

--4.43 412:555

--12.50 443:555

--1.55 443:490

--3.91 510:555

-1.41 412:490
-3.77 510:555

-2.32 490:555

3.46 490:555

4.16 490:555

11.12 490:510

-3.71 510:555

--3.61 510:555

R 2

97.2
96.1

94.2

97.7

98.1

98.2

97.7

97.1

95.9

98.6

94.7

93.3

93.3

Table 19. BSM data CZCS compatible log multiple regression algorithms.

Variable Constant Coeff. 1 Ratio 1 Coeff. 2 Ratio 2 R 2

Ca -0.157

Ps 0.113
P 1.024

Cpp -_- Cp S -0.251
G 1.579

DOM -0.069

CTp 13.920

-1.59 443:555

- 1.60 443:555

-1.69 443:555

-3.55 510:555
-1.70 443:555

-3.54 443:555

-40.60 510:555 20.76 553:510

93.3

93.2

96.7

95.7

93.2
94.2

92.7

multiple regression hyperbolic fit pigment.Table 20. NET datl

Constant H(Al:555) Coeff. 1 H(A2:555) Coeff. 2

0.757 ± 0.24

412 0.188 ± 0.03

412 0.519±0.15

412 0.954 ± 0.07

443 -0.461 ± 0.03

443 -0.659 ± 0.02
490 1.903 ± 0.13

443 1.188 ± 0.08

490 1.121 ± 0.05

510 0.759 ± 0.04

490 1.821 ± 0.08

510 1.101 ± 0.29
510 -0.653 ± 0.06

R 2

84.8

92.5

91.4

95.3

66.0

91.6
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(POLDER)airborneimagery,to testpublishedmodels.
MorelandGentili(1993)indicatethat for ratios,theef-
fectsof viewingoffnadirarelessseverethanforradiance
inversionmethods;theviewingangleeffectisnotseenin
CZCS images, but some effects may be observed with the

greater radiometric precision of SeaWiFS.

The precision of the retrieval can be addressed using

both the NET data and the hyperbolic model. The hy-
perbolic model can be differentiated analytically to show

how dL,:j/dPs varies with pigment. The rate of change
in ratio per unit pigment gives the inherent accuracy of
the retrievals. Figure 13 shows this rate of change is high

for low pigment concentrations, and also shows a log-log

decrease with increasing pigment concentration. At low

pigment dL,:j/dP s is higher for the 412:555 and 443:555,

but the rate of change is similar for all band ratios at pig-
ments greater the 1 mg m -3. The log-log relationship also

indicates that the error structure of the pigment retrievals

will be log normal, even if local variability in pigment is

normally distributed.

The relative sensitivities shown in Fig. 8 indicate the
412:555 and 443:555 ratios respond to chlorophylls and al-

most as strongly to DOM, and the 490:555 and 510:555
ratios respond principally to carotenoids, with the 490:555

ratio showing some response to chlorophylls. Figure 14

shows the relationship between total chlorophyll and total

carotenoid, showing the ranges of pigment where each band
ratio may be used. The carotenoid chlorophyll ratio seems

to break down at total chlorophylls below 0.1 mg m -3. This

effect may be due to different species assemblages in highly

oligotrophic waters (possibly due to phycobiliproteins re-

placing carotenoids), or it may be an analytical artifact,
since the total carotenoids are a sum of a greater number

of components, each of which may be below the detec-
tion limits of HPLC. More data will be needed to resolve

the problem, but the present data suggest some caution

is required when using the 490:555 (and 510:555) ratio to
determine chlorophyll in oligotrophic waters.

These considerations limit the choice of final algorithm,
from those suggested in the previous sections. The follow-

ing conclusions can be made.

1) If algorithm switching is to be avoided, only

combinations of the 490, 510, and 555 bands

can be used. Table 17 shows that no multiple

regression log algorithm could be derived using
these bands. In essence, the 490:555, 490:410,
and 510:555 contained no extra information to

determine pigment.

2) If algorithm switching can be implemented, then
Table 17 indicates the 443:490 and 443:555 ra-

tios can be used. It will not be necessary to use

the 412 nm band where atmospheric correction
may be a problem.

For the single algorithm, it is a matter of choosing be-

tween the 490:555 and 510:555 combinations. Tables 10,

11, and 12 indicated there is no significant difference be-

tween the quality of fits of the ratios for either the log or
hyperbolic model fit. The pigment relationship shown in

Fig. 14 indicates there are biological reasons for consider-
ing the 490:555 ratio superior, since its response to chloro-

phyll will alleviate potential problems in oligotrophic wa-
ters. Both the hyperbolic model and log-log fits represent

adequate models for the data, but the hyperbolic model
shows erroneous retrievals at high chlorophyll where there
is little data.

A model constrained with high chlorophyll simulated
data has been used to produce a revised set of coefficients
for the hyperbolic model. The constrained fits shown in

Tables 21 and 22 give a better R 2 for the 490:555 ratio

compared with the 510:555 ratio. Using these revised ta-

bles, the error structure can be examined. Figure 15 shows
the mean residual error for both the hyperbolic model and

log-log regression. Although the hyperbolic model per-
forms better at pigments less than 2mgm -3, the log-log

regression covers the whole range of pigment. The final
algorithm uses the hyperbolic estimates at low pigment to
account for the deviation from log linearity at low chloro-

phyll (see Fig. 6), and the log-log regression at pigments
greater than this.

Table 21. Revised NET data pigment curve fits,
where bands refer to the band:555 (band 5) ratio.

Band

412

443
490

510

B A1 A2

13.14 0.019 12.48

9.55 0.045 8.59

5.29 0.112 3.48

3.17 0.140 1.79

R 2

88.6
89.1

87.5

84.9

Table 22. Revised NET data chlorophyll curve fits,
where bands refer to the band:555 (band 5) ratio.

Band

412
443

490

510

B A1 A2

13.14 0.022 14.45

9.55 0.054 10.31

5.29 0.136 4.23

3.17 0.169 2.16

R 2

86.6
87.5

85.7

82.7

This combined method gives an R 2 of 90.9% for pig-
ment compared with R 2 values of 87.5% and 89.6% for

the hyperbolic and log regressions, respectively. Although
this is only a small improvement over the whole range, for
pigment concentrations less than 2 mg m -3 the hyperbolic
model gives an R 2 of 82.3% compared with an R 2 of 74.1%

for the log regression. This improvement adds consider-

ably to the accuracy of pigment retrievals in oligotrophic
waters.

Explicitly, the algorithms for chlorophyll and pigment
are computed as follows: 1) The log regressions are deter-
mined as

[ .....Ca : exp 0.464- 1._9m[__ (21)
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and

Ca --}- Cp = exp [0.696 - 2.085 In (_)]LwN(490) ; (22)

and 2) if Ca or Ca + Cp are less than 2.0 mg m-3, the inver-

sion of the hyperbolic model,i.e., C' = (L,:j - B)/(AIB-

A2L_:j), is used to calculate Cp and Ca as

and

LWN(490) -- 5.29
C_, = LWN(555) (23)

0.719 -- 4 23_
• LWN(555)

L_N(490) _ 5.29
Ca q'- Cp = LWN(555)

0•592 - 3 48 LWN(49°)'
• LwN (555)

(24)

It should be emphasized that the split represents a

curve fitting method, rather than a split algorithm. With

a more extensive high pigment data set, the hyperbolic

model can be better constrained to cover the entire dy-
namic range of pigment. Figure 16 shows a comparison

of the 490:555 ratio algorithm with the OCTS algorithm,
the Clark combined ratio model, and the 443:555 ratio al-

gorithm. The algorithm is, as expected, highly sensitive

to carotenoids; it shows the least response to Gelbstoff,

scattering, and detritus.
Although a number of the multiband algorithms shown

in previous sections show high R 2 values, they also display

problems when used as inversion algorithms in that they

can produce negative retrievals. The final multiband algo-

rithm that was developed avoids these problems; it is based

on a correction to the 490:555 ratio algorithm shown above.

By using the same band ratios as the hyperbolic multiple

pigment algorithms shown in Fig. 11 (see Table 19), this

algorithm can be normalized to the pigment retrievals as
described below.

The multiple regression algorithm for chlorophyll is:

or

C_ = A1H(490:555) + A2H(443:555) (25)

c.
H(490:555)

H(443:555) ]

= A' +A2L_ j ,
(26)

which may be approximated by

ca

H(490:555)
- At

=

"LwN(443) ]LwN(555) + A_

"LwN(443) ]LwN(555) + A_

½ (27)

where the square root is an arbitrary scaling of the LWN

ratio, and A1 and A2 are arbitrary constants. The use

of the LWN ratio rather than the ratio of the hyperbolic

pigments has the advantage of reducing noise, since only

two bands are required for the final correction.
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The final algorithm adjustment is

r LwN( 443) 7
c: =1455co 02v9!

and

c"+ = 12s0[co+cp] 0.163] ½

(2s)

(29)

The correction is applied where pigment concentration is

less than 2 mg m -3, i.e., when LWN (443) is valid. This cor-

rected pigment concentration results in an overall (0.02-

50 mg m -3) R 2 of 91.1%, and an R 2 of 90.9% when pigment
concentration is less than 2mgm -3. The improvement is

8.6% when compared with the composite single-band al-

gorithm. It is envisaged that when the algorithm is used

for biogeochemical provinces with greater variation in pig-

ment type, the algorithm will show a greater improvement

in the explained variance.

7. CONCLUSIONS

1. Bio-optical models, show that there is a sound theo-

retical basis for band-ratio algorithms with explicit
solutions which relate to the IOPs of water and its

constituents. This indicates that the measurement

of IOPs for algorithm development may be as appro-

priate as the measument of apparent optical prop-

erties (AOPs), e.g., R(,_).

2. The BSM developed for this study has proved a

powerful tool for the development of algorithms,

and has the potential for further parameterization,
so as to achieve closure with in situ data.

3. Biological coupling, as indexed by the major pig-

ment groups, constrains and restricts the bio-optical

variability (i.e., there is less bio-optical variability

than would be expected); thus, there are sound

grounds for an unbiased composite photosynthetic

pigment algorithm.

4. Although globally robust, there is interprovince var-

iability in the chlorophyll to carotenoid ratio. This

variability implies that the accuracy of two band

single pigment algorithms, e.g., chlorophyll a or PSC

will be limited. This fact does not affect the utility

of global photosynthetic pigment algorithms, how-

ever, and provides a basis for constructing high ac-

curacy province-specific aigorithms.

5. Factor analysis of band ratio combinations (all Sea-

WiFS two-band combinations) demonstrates that
discrete band ratios contain the same variance as

similar studies using complete spectra.
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6. Optimal band ratio combination algorithms provide

some measure of confidence that a universal algo-

rithm can be derived (within the bounds of current

data sets), i.e., both empirical methods (conclusion

1) and bio-optical models (conclusion 2) point to a

similar conclusion with respect to a universal pho-

tosynthetic pigment algorithm.

7. Within the radiometric constraints of SeaWiFS, the

490:555 band combination provides the most robust

retrieval of pigment or chlorophyll over five decades

of pigment level.

8. With the exception of the total pigment regression

(Table 19), the BSM data indicates there is no ex-

tra information to be gained by using multiband al-

gorithms with CZCS data. The hyperbolic 443:555

and 510:555 (with ammended coefficients) algo-

rithms can be used with CZCS data, as an alter-

native to log-log regression."
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AOL

AOP

BATS

BOAWG

BOFS

BSM

Case-1

Case-2

CZCS

DOM

EqPac

GIN

HPLC

IOP

IR

NABE

NASA

NEAT

NET

NIMBUS

OCTS

GLOSSARY

Airborne Oceanographic Lidar

Apparent Optical Property

Bermuda Atlantic Time-Series Station

Bio-Optical Algorithm Working Group

Biogeochemical Ocean Flux Study

Bio-Optical Synthetic Model

Water whose reflectance is determined solely by ab-

sorption.

Water whose reflectance is significantly influenced

by scattering.
Coastal Zone Color Scanner

Dissolved Organic Matter

Equatorial Pacific

Greenland, Iceland, and Norwegian (Seas)

High Performance Liquid Chromatography

Inherent Optical Property
Infrared

North Atlantic Bloom Experiment

National Aeronautics and Space Administration

Northeast Atlantic

NIMBUS Experiment Team

Not an acronym, but a series of NASA experimen-

tal weather satellites containing a wide variety of
atmosphere, ice, and ocean sensors.

Ocean Color Temperature Sensor (Japan)

PML

POLDER

PPC

PSC

SeaWiFS

SPO

SPSWG

Sterna

a(A)
a I

aa

aabc

ab

ac

a9

app

aps

aw

A_

Aj

A_

A;

bbp

bbw

brain

Plymouth Marine Laboratory (United Kingdom)

Polarization and Directionality of the Earth's Re-

flectances (France)

Photoprotectant Carotenoids

Photosynthetic Carotenoids

Sea-viewing Wide Field-of-view Sensor

SeaWiFS Project Office

SeaWiFS Prelaunch Science Working Group

Not an acronym, but a BOFS Antarctic research

project.

SYMBOLS

The absorption coefficient.

The absorption at the Raman excitation wavelength.

The specific absorption of chlorophyll a.

The specific absorption of chlorophylls a, b, and c.

The specific absorption of chlorophyll b.

The specific absorption of chlorophyll c.

The DOM/detritus specific absorbance.

The specific absorption of PPC.

The specific absorption of PSC.

The absorption coefficient of water.

The DOM/chlorophyll combined absorbance.

An arbitrary constant.

An arbitrary constant.

An arbitrary constant.

An arbitrary constant.

The backscatter coefficient.

The particle specific backscatter coefficient (usual-

ly normalized to chlorophyll a concentration).
The backscatter coefficient of water.

Scattering associated with phytoplankton (Prieur

and Sathyendranath, 1981).

bn The Raman scattering coefficient.

B An empirical constant.

Bb An empirical constant dependant on the backscatter
ratio.

c(A) The spectral attenuation coefficient.

C Chlorophyll concentration.

Ca The concentration of chlorophyll a.

Cabc The concentration of chlorophylls a, b, and c.

Cb The concentration of chlorophyll b.

Cc The concentration of chlorophyll c.

Cp Phaeopigment concentration.
Cpp PPC concentration.

Cps PSC concentration.

Cs Simulated C.

CTp Total pigment concentration.

E_ The downwelling irradiance at the Raman excita-

tion wavelength.

F0 Extra terrestrial irradiance.

F1 Pigment biomass loading factor.

F2 Detritus concentration loading factor.

F3 Carotenoid concentration (or relative pigment abun-

dance) loading factor.

g A constant that consists of the ratios of the air-sea

interface effects, the effects of the light field, and

the relative spectral variation of Q.
The concentration of DOM and DOM-like absorbers.

The effect of the downwelling light field.
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k

kl

k2

L_:j

Lw_(_)
L'_N
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Pigment calculated from the hyperbolic transform

of L,:j.

An index to two vectors of band ratios kl and k2.

A band ratio vector.

A band ratio vector.

The ratio of normalized water-leaving radiances at

wavelengths i ()_) to j (Aj): LWN()_)/LwN(,kj).

Normalized water-leaving radiance.

Normalized water-leaving radiance at the Raman

excitation wavelength.

n The index of refraction.

P The particulate concentration including detrital ma-

terial.

Ps Simulated C_ + Cp (q.v.).

Q The ratio of upwelling irradiance to radiance, which

varies with the angular distribution of the upwelling

light field, and is rr for an isotropic distribution.

r The air-water reflectance for diffuse irradiance.

R 2 The regression coefficient.

R(A) The irradiance reflectance at a particular wave-

length.

S The slope of a line.

a' A power law constant.

a0 A curve fitting constant.

al A curve fitting constant.

(_2 A curve fitting constant.

_' A power law constant.

A' Raman excitation wavelength.

A_ Wavelength of light at a particular band.

Aj Wavelength of light at a particular band.

p The Fresnel reflectance at normal incidence.

_5 The Fresnel reflectance for sun and sky irradiance.
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